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Abstract
Multilayer fullerene onions present an almost perfect round shape in
transmission electron micrographs. On the other hand, single-layer fullerenes
seem to become polyhedral with flat faces as the number of carbon atoms grows.
We study geometries of fullerenes with symmetrically arranged defects. It is
shown that these structures have a rounder shape, after energy minimization
with a Tersoff–Brenner potential, than fullerenes with no defects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fullerenes were discovered in 1985 [1] and are now an an important subject of theoretical and
experimental investigations. These molecules present a cage-like shape made of five- and six-
membered carbon rings and their sizes range from a few tens to thousands of carbon atoms.
Small fullerenes have an almost spherical shape while large molecules become polyhedral.
Ugarte discovered that by means of intense electron-beam irradiation of carbon soot particles,
nested fullerenes can be obtained [2]. These have also been called multilayer fullerene
cages (MFC) and fullerene onions. Above a certain critical number of atoms, around a few
thousands, these multilayer molecules are more stable than single-cage molecules [3] which
is a consequence of van der Waals interactions between different shells.

Transmission electron micrographs of giant fullerenes show polyhedral as well as spherical
structures; see [4]. These structures after acid treatment become nested fullerenes (onions) and
only show spherical shapes. Most theoretical calculations show that large isolated fullerene
cages have a polyhedral shape [5]. Large fullerene cages should prefer a polyhedral shape, as
planar arrangements of carbon atoms, such as in graphene sheets, are more stable; covalent
bonds have less strain. This strain comes from the bending of sp2 orbitals.

It has been suggested that the strain of the lattice could be reduced by the inclusion in
the carbon lattice of defects [6–9]. In [6], formation energies of defects in fullerenes were
calculated. Defects are generated using two methods, the Stone–Wales transformation and
the chain insertion method. The former consists of the rotation of a single bond—then the
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number of carbon atoms remains the same—and in the latter method new atoms are inserted
with a further rearrangement of bonds. It was found that fullerenes with defects are more
likely to be stable at finite temperature and defects give rise to geometries that are more
spherical in shape. Bates and Scuseria [7] generated defects using the same methods, but
they used a semiempirical tight-binding potential for carbon and, for small molecules, the
3-21G basis set at the Hartree–Fock level of theory. It was also claimed that the presence of
defects could be a simple explanation for the observed sphericity of MFC. A similar result was
obtained in [8], where a local-density approximation was used to study fullerene onions. In
all of these papers, fullerenes lost their icosahedral symmetry when defects were generated.
In [9] defects are symmetrically arranged, so the final structure still belongs to the pure
rotational icosahedral point group I and in some cases even to Ih. The electronic structure
of those symmetrical defective molecules has been systematically calculated (see [10]) and
they have closed electronic structures in most cases, i.e. an equal number of bonding and
antibonding orbitals. Furthermore, the lowest unoccupied molecular orbital (LUMO) belongs
to the irreducible representation T1 of the icosahedral group as for the defect-free case and
for the highest occupied molecular orbital (HOMO) it also belongs to the same irreducible
representation as for the defect-free case: the representation H of the icosahedral group I.
In this paper we calculate the geometry of molecules of the same kind as in [10] using the
Tersoff–Brenner potential [12, 13].

2. Numerical method

The numerical method consists of two main parts. The first one is concerned with obtaining
initial configurations suitable for energy minimization. The second part of the numerical
method uses a breathing algorithm to relax the structure, thus minimizing the energy of
covalent bonds. A Tersoff–Brenner potential is used to model the energy of covalent bonds.
This potential realistically describes bonding structures and properties of several carbon-based
materials such as diamond and graphite.

2.1. Initial configurations

All the initial configurations are obtained from solving Thomson’s problem, which consists of
finding the ground state of N charges constrained to move onto the surface of a unit sphere and
interacting with each other with a pairwise 1/r repulsive potential. Solutions to that problem are
triangular lattices. Let ni be the number of charges with i nearest neighbours. Euler’s theorem
says that the following expression must be satisfied for lattices on the surface of a sphere:

∑

i

ni(6 − i) = 12. (1)

It easy to check that it is impossible to make a triangular lattice on the sphere with only charges
with six nearest neighbours. It is necessary for at least twelve charges with five nearest neigh-
bours to satisfy equation (1). If the lattice has charges with seven nearest neighbours, its
number of charges must obey

n5 − n7 = 12. (2)

In other words, for each charge with seven nearest neighbours there must be an additional
charge with five nearest neighbours. It was found that the electrostatic energy in Thomson
problem can be reduced by the symmetrical distribution of pairs of charges with seven and five
nearest neighbours [11]. To make these structures, we start from a perfect triangulation of the
sphere, where we only have twelve charges with five nearest neighbours placed at the vertices
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Figure 1. An example of dualization of a solution to Thomson’s problem. Defects are on the
second line. This type of structure is chiral.

Figure 2. An example of dualization of a solution to Thomson’s problem. Defects are on the
third line.

of an icosahedron. We call these charges disclinations. Charges around disclinations form
rings of 5i charges, i being the order number of the ring; see [11]. Solutions to Thomson’s
problem with symmetrically arranged defects are obtained after removing rings around each
one of the twelve disclinations and then relaxing the energy of the system. If the twelve rings
removed (one per disclination) are the ith rings, we say that the defects are on the i-line.

Dualizing those solutions, i.e. interchanging faces with vertices, we obtain lattices of
fullerene type, i.e. hexagonal lattices. Charges in the Thomson problem with n nearest
neighbours become rings of fullerene carbon atoms with n members. So, it is straightforward
to translate the conclusions of the last paragraph to the fullerene lattice case. Examples of the
dualization process can be seen in figures 1 and 2 for two different configurations of defects.
The defects are on the second line (figure 1), the structure has chirality and the molecule
belongs to the pure rotational icosahedral point group I.

2.2. Breathing algorithm

The search for ground states for a molecule with a Tersoff–Brenner potential is not a trivial
task. That potential has many local minima which stop the computer too soon in a direct search.
To avoid this, it is necessary to implement some kind of simulated annealing algorithm. The
breathing algorithm is quite easy to implement and it finds energy minima efficiently for this
type of configuration. We summarize the algorithm in the following steps:

(i) We start from a configuration where atoms are placed on a spherical surface. These
spherical configurations are obtained after dualizing a solution to Thomson’s problem.
Positions of the atoms and the energy of this initial configuration are stored as the minimal
positions and minimal energy respectively. We set χ = 0.2.
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Figure 3. Fullerene structures viewed along three different axes. From left to right the axes are C3,
C5 and C2 of the point group I. (a) Defect-free fullerene with 1500 carbon atoms. (b) Fullerene
structure with defects on the second line with 1260 carbon atoms. (c) Fullerene structure with
defects on the third line with 1140 carbon atoms.

(ii) Energy is minimized using a conjugated gradient algorithm. We are likely to find a local
minimum. If the energy obtained is lower than the minimal energy, then the minimal
energy and minimal positions are replaced by the calculated energy and the new positions
of atoms.

(iii) The centre of the molecular structure is calculated and the molecule is expanded around
that point in terms of a random factor between 1 − χ and 1 + χ .

(iv) After several steps, χ is reduced and the positions of the atoms and the energy are replaced
by the minimal positions and minimal energy.

(v) The program goes back to step (ii) unless a stopping criterion is satisfied.

This algorithm is easy to implement and allows one to obtain ground states efficiently.

3. Results

Final configurations after energy minimization can be seen in figures 3 and 4. In those figures,
every row shows the same molecule but viewed along each one of the three symmetry axes of the
icosahedral point group I: threefold (C3), fivefold (C5) and twofold (C2) axes. These figures,
in their first rows, show structures with no defects; in the second rows, structures with defects
on the second line are shown and, in the third rows, structures with defects on the third line.
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Figure 4. Fullerene structures viewed along three different axes. From left to right the axes are C3,
C5 and C2 of the point group I. (a) Defect-free fullerene with 6000 carbon atoms. (b) Fullerene
structure with defects on the second line with 5760 carbon atoms. (c) Fullerene structure with
defects on the third line with 5640 carbon atoms.

It can be appreciated in figure 3 that fullerenes with defects on the second line seems rounder
than the rest for that number of carbon atoms. On the other hand, in figure 4 one can check by
visual inspection that fullerenes with defects on the third line have a rounder shape than the
rest of the structures in the same figure.

To measure the sphericity of these molecules, we use the standard deviations (SD) of the
radii of each structure. SDs are plotted in figure 5 for defect-free fullerenes (solid dots), for
fullerenes with defects on the second line (solid squares) and for fullerenes with defects on the
third line (empty diamonds). Fullerenes larger that around 1000 carbon atoms always have a
smaller SD of the radii when they are defective, the position of the defects being important to
determining which type of defective fullerene has the smaller SD. Figures 3 and 4 correspond
to the regions of ≈1500 and 6000 carbon atoms in figure 5.

Energies per atom of covalent bonds are larger for defective fullerenes, although that
difference decreases as the number of carbon atoms increases. For fullerenes with around
1500 carbon atoms, the covalent energy for the defective fullerene (1140 atoms) is 0.1 eV
larger per atom than that of the defect-free case (1500 atoms). For fullerenes around 7000
carbon atoms, defective fullerenes only have 0.02 eV of excess energy. This clearly indicates
that isolated defective giant fullerenes are less stable than perfect fullerenes. This excess
energy could be overcome by van der Waals energies between different shells in multilayer
fullerene onions.
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Figure 5. Standard deviations of radii for defect-free fullerenes (solid dot), for fullerenes with
defects on the second line (solid squares) and for fullerenes with defects on the third line (empty
diamonds).

4. Conclusions

We have calculated the geometry of several fullerenes using a Tersoff–Brenner potential.
Fullerenes with defects present rounder shapes than defect-free ones. The SD of the radii
is smaller for defective fullerenes and the position of defects seems to play an essential
role. In any case, energies are slightly larger for defective structures. These fullerenes with
symmetrically arranged defects could be important in MFC where the van der Waals interaction
between different shells could reduce the total energy, and it could help in understanding why
buckyonions show an almost perfect spherical shape in transmission electron micrographs.
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